
package com.mycompany.steppingstone5_recipetest;

/**

 * Recipe Test class

 *

 * Unit test for the Recipe class.

 * Creates a recipe object, gathers user input,

 * and prints the formatted recipe.

 */

public class SteppingStone5_RecipeTest {

 public static void main(String[] args) {

 SteppingStone5_Recipe recipe = new SteppingStone5_Recipe();

 recipe.createNewRecipe();

 recipe.printRecipe();

 }

}

package com.mycompany.steppingstone5_recipetest;

import java.util.ArrayList;

import java.util.Scanner;

/**

 * Recipe class

 *

 * Represents a recipe with a name, number of servings,

 * a list of ingredients, and total calories.

 *

 * Design decisions:

 * - ArrayList is used to store ingredients dynamically.

 * - Encapsulation is enforced through private variables

 * with public accessors and mutators.

 */

public class SteppingStone5_Recipe {

 /* =========================

 Instance Variables

 ========================= */

 private String recipeName;

 private int servings;

 private ArrayList<Ingredient> recipeIngredients;

 private double totalRecipeCalories;

 /* =========================

 Constructors

 ========================= */

 // Default constructor

 public SteppingStone5_Recipe() {

 this.recipeName = "";

 this.servings = 0;

 this.recipeIngredients = new ArrayList<>();

 this.totalRecipeCalories = 0.0;

 }

 // Parameterized constructor

 public SteppingStone5_Recipe(String recipeName, int servings,

 ArrayList<Ingredient> recipeIngredients,

 double totalRecipeCalories) {

 this.recipeName = recipeName;

 this.servings = servings;

 this.recipeIngredients = recipeIngredients;

 this.totalRecipeCalories = totalRecipeCalories;

 }

 /* =========================

 Accessors and Mutators

 ========================= */

 public String getRecipeName() {

 return recipeName;

 }

 public void setRecipeName(String recipeName) {

 this.recipeName = recipeName;

 }

 public int getServings() {

 return servings;

 }

 public void setServings(int servings) {

 this.servings = servings;

 }

 public ArrayList<Ingredient> getRecipeIngredients() {

 return recipeIngredients;

 }

 public void setRecipeIngredients(ArrayList<Ingredient> recipeIngredients) {

 this.recipeIngredients = recipeIngredients;

 }

 public double getTotalRecipeCalories() {

 return totalRecipeCalories;

 }

 public void setTotalRecipeCalories(double totalRecipeCalories) {

 this.totalRecipeCalories = totalRecipeCalories;

 }

 /* =========================

 Methods

 ========================= */

 /**

 * Prints the formatted recipe details.

 * Demonstrates object behavior and iteration.

 */

 public void printRecipe() {

 System.out.println("\nRecipe: " + recipeName);

 System.out.println("Servings: " + servings);

 System.out.println("Ingredients:");

 for (Ingredient ingredient : recipeIngredients) {

 ingredient.printIngredient();

 }

 System.out.println("Total Calories: " + totalRecipeCalories);

 System.out.println("Calories per Serving: " +

 calculateCaloriesPerServing());

 }

 /**

 * Builds a recipe from user input.

 * Demonstrates Scanner usage, loops, and conditionals.

 */

 public void createNewRecipe() {

 Scanner scnr = new Scanner(System.in);

 System.out.print("Enter recipe name: ");

 recipeName = scnr.nextLine();

 System.out.print("Enter number of servings: ");

 servings = scnr.nextInt();

 recipeIngredients = new ArrayList<>();

 totalRecipeCalories = 0.0;

 String addMore = "y";

 while (addMore.equalsIgnoreCase("y")) {

 System.out.print("Ingredient name: ");

 scnr.nextLine(); // clear buffer

 String name = scnr.nextLine();

 System.out.print("Amount: ");

 double amount = scnr.nextDouble();

 System.out.print("Unit of measure: ");

 scnr.nextLine(); // clear buffer

 String unit = scnr.nextLine();

 System.out.print("Calories: ");

 double calories = scnr.nextDouble();

 Ingredient ingredient =

 new Ingredient(name, amount, unit, calories);

 recipeIngredients.add(ingredient);

 totalRecipeCalories += calories;

 System.out.print("Add another ingredient? (y/n): ");

 addMore = scnr.next();

 }

 }

 /**

 * Custom Method

 *

 * Pseudocode:

 * IF servings > 0

 * caloriesPerServing = totalRecipeCalories / servings

 * ELSE

 * caloriesPerServing = 0

 * RETURN caloriesPerServing

 *

 * @return calories per serving

 */

 public double calculateCaloriesPerServing() {

 if (servings > 0) {

 return totalRecipeCalories / servings;

 } else {

 return 0;

 }

 }

}

package com.mycompany.steppingstone5_recipetest;

/**

 * Ingredient class

 *

 * Represents a single ingredient in a recipe.

 * Stores the ingredient name, amount, unit of measure,

 * and calorie count.

 *

 * Design decisions:

 * - Encapsulation is enforced using private variables

 * - Public getters and setters allow controlled access

 */

public class Ingredient {

 /* =========================

 Instance Variables

 ========================= */

 private String name;

 private double amount;

 private String unit;

 private double calories;

 /* =========================

 Constructors

 ========================= */

 // Default constructor

 public Ingredient() {

 this.name = "";

 this.amount = 0.0;

 this.unit = "";

 this.calories = 0.0;

 }

 // Parameterized constructor

 public Ingredient(String name, double amount, String unit, double calories) {

 this.name = name;

 this.amount = amount;

 this.unit = unit;

 this.calories = calories;

 }

 /* =========================

 Accessors and Mutators

 ========================= */

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public double getAmount() {

 return amount;

 }

 public void setAmount(double amount) {

 this.amount = amount;

 }

 public String getUnit() {

 return unit;

 }

 public void setUnit(String unit) {

 this.unit = unit;

 }

 public double getCalories() {

 return calories;

 }

 public void setCalories(double calories) {

 this.calories = calories;

 }

 /* =========================

 Methods

 ========================= */

 /**

 * Prints the formatted ingredient details.

 * This method replaces the previously unimplemented

 * method that caused a runtime exception.

 */

 public void printIngredient() {

 System.out.println("- " + amount + " " + unit + " of " + name

 + " (" + calories + " calories)");

 }

}

/*

 * Click nbfs://nbhost/SystemFileSystem/Templates/Licenses/license-default.txt to change this license

 * Click nbfs://nbhost/SystemFileSystem/Templates/Classes/Class.java to edit this template

 */

package com.mycompany.steppingstone5_recipetest;

import java.util.ArrayList;

import java.util.Scanner;

/**

 *

 * @author Darren J. Oates

 */

public class SteppingStone6_RecipeBox {

 /* =========================

 Instance Variables

 ========================= */

 private ArrayList<SteppingStone5_Recipe> listOfRecipes;

 /* =========================

 Constructors

 ========================= */

 // Default constructor

 public SteppingStone6_RecipeBox() {

 this.listOfRecipes = new ArrayList<>();

 }

 // Constructor with parameters

 public SteppingStone6_RecipeBox(ArrayList<SteppingStone5_Recipe> listOfRecipes) {

 this.listOfRecipes = listOfRecipes;

 }

 /* =========================

 Accessors and Mutators

 ========================= */

 public ArrayList<SteppingStone5_Recipe> getListOfRecipes() {

 return listOfRecipes;

 }

 public void setListOfRecipes(ArrayList<SteppingStone5_Recipe> listOfRecipes) {

 this.listOfRecipes = listOfRecipes;

 }

 /* =========================

 Custom Methods

 ========================= */

 /**

 * Prints the names of all recipes in the recipe box.

 */

 public void printAllRecipeNames() {

 System.out.println("\nRecipe List:");

 for (SteppingStone5_Recipe recipe : listOfRecipes) {

 System.out.println("- " + recipe.getRecipeName());

 }

 }

 /**

 * Prints all details for a recipe that matches the given name.

 *

 * @param recipeName name of the recipe to display

 */

 public void printAllRecipeDetails(String recipeName) {

 boolean found = false;

 for (SteppingStone5_Recipe recipe : listOfRecipes) {

 if (recipe.getRecipeName().equalsIgnoreCase(recipeName)) {

 recipe.printRecipe();

 found = true;

 }

 }

 if (!found) {

 System.out.println("Recipe not found.");

 }

 }

 /**

 * Creates a new recipe using user input and

 * adds it to the recipe box.

 */

 public void addNewRecipe() {

 SteppingStone5_Recipe newRecipe = new SteppingStone5_Recipe();

 newRecipe.createNewRecipe();

 listOfRecipes.add(newRecipe);

 }

 /* =========================

 Main Method (Driver)

 ========================= */

 public static void main(String[] args) {

 Scanner scnr = new Scanner(System.in);

 SteppingStone6_RecipeBox recipeBox = new SteppingStone6_RecipeBox();

 String choice;

 do {

 System.out.println("\nRecipe Manager Menu");

 System.out.println("1. Add new recipe");

 System.out.println("2. View all recipe names");

 System.out.println("3. View recipe details");

 System.out.println("4. Exit");

 System.out.print("Choose an option: ");

 choice = scnr.nextLine();

 switch (choice) {

 case "1" -> recipeBox.addNewRecipe();

 case "2" -> recipeBox.printAllRecipeNames();

 case "3" -> {

 System.out.print("Enter recipe name: ");

 String name = scnr.nextLine();

 recipeBox.printAllRecipeDetails(name);

 }

 case "4" -> System.out.println("Exiting Recipe Manager.");

 default -> System.out.println("Invalid selection.");

 }

 } while (!choice.equals("4"));

 }

}

