package com.mycompany.steppingstone5 recipetest;

/**

* Recipe Test class

*

* Unit test for the Recipe class.

* Creates a recipe object, gathers user input,

* and prints the formatted recipe.

*/

public class SteppingStone5 RecipeTest {

public static void main(String[] args) {

SteppingStone5 Recipe recipe = new SteppingStone5 Recipe();
recipe.createNewRecipe();

recipe.printRecipe();

package com.mycompany.steppingstone5_recipetest;

import java.util. ArrayList;

import java.util.Scanner;

/**

* Recipe class

*

* Represents a recipe with a name, number of servings,
* a list of ingredients, and total calories.

*

* Design decisions:

* - ArrayList is used to store ingredients dynamically.

* - Encapsulation is enforced through private variables

* with public accessors and mutators.
*/

public class SteppingStone5 Recipe {

/*

Instance Variables

*/

private String recipeName;
private int servings;
private ArrayList<Ingredient> recipelngredients;

private double totalRecipeCalories;

/*

Constructors

*/

// Default constructor

public SteppingStone5 Recipe() {
this.recipeName = "";
this.servings = 0;
this.recipelngredients = new ArrayList<>();

this.totalRecipeCalories = 0.0;

/] Parameterized constructor
public SteppingStone5 Recipe(String recipeName, int servings,
ArrayList<Ingredient> recipelngredients,
double totalRecipeCalories) {
this.recipeName = recipeName;

this.servings = servings;

this.recipelngredients = recipelngredients;

this.totalRecipeCalories = totalRecipeCalories;

/*

Accessors and Mutators

*/

public String getRecipeName() {

return recipeName;

public void setRecipeName(String recipeName) {

this.recipeName = recipeName;

public int getServings() {

return servings;

public void setServings(int servings) {

this.servings = servings;

public ArrayList<Ingredient> getRecipelngredients() {

return recipelngredients;

public void setRecipelngredients(ArrayList<Ingredient> recipelngredients) {

this.recipelngredients = recipelngredients;

public double getTotalRecipeCalories() {

return totalRecipeCalories;

public void setTotalRecipeCalories(double totalRecipeCalories) {

this.totalRecipeCalories = totalRecipeCalories;

/*

Methods

*/

/**

* Prints the formatted recipe details.

* Demonstrates object behavior and iteration.

*/

public void printRecipe() {
System.out.println("\nRecipe: " + recipeName);
System.out.println("Servings: " + servings);

System.out.println("Ingredients:");

for (Ingredient ingredient : recipelngredients) {

ingredient.printIngredient();

System.out.println("Total Calories: " + totalRecipeCalories);
System.out.println("Calories per Serving: " +

calculateCaloriesPerServing());

/**

* Builds a recipe from user input.

* Demonstrates Scanner usage, loops, and conditionals.
*/

public void createNewRecipe() {

Scanner scnr = new Scanner(System.in);

System.out.print("Enter recipe name: ");

recipeName = scnr.nextLine();

System.out.print("Enter number of servings: ");

servings = scnr.nextlnt();

recipelngredients = new ArrayList<>();

totalRecipeCalories = 0.0;

String addMore ="y";

while (addMore.equalsignoreCase("y")) {

System.out.print("Ingredient name: ");

scnr.nextLine(); // clear buffer

String name = scnr.nextLine();

System.out.print(" Amount: ");

double amount = scnr.nextDouble();

System.out.print("Unit of measure: ");

scnr.nextLine(); // clear buffer

String unit = scnr.nextLine();

System.out.print("Calories: ");

double calories = scnr.nextDouble();

Ingredient ingredient =

new Ingredient(name, amount, unit, calories);

recipelngredients.add(ingredient);

totalRecipeCalories += calories;

System.out.print("Add another ingredient? (y/n): ");

addMore = scnr.next();

/**

* Custom Method

*

* Pseudocode:

* IF servings > 0

* caloriesPerServing = totalRecipeCalories / servings
* ELSE

* caloriesPerServing = 0

* RETURN caloriesPerServing

*

* (@return calories per serving
*/

public double calculateCaloriesPerServing() {

if (servings > 0) {
return totalRecipeCalories / servings;
} else {

return 0;

package com.mycompany.steppingstone5 recipetest;

/**

* Ingredient class

%

* Represents a single ingredient in a recipe.

* Stores the ingredient name, amount, unit of measure,
* and calorie count.

*

* Design decisions:

* - Encapsulation is enforced using private variables

* - Public getters and setters allow controlled access
*/

public class Ingredient {

/*

Instance Variables

*/
private String name;

private double amount;

private String unit;

private double calories;

/*

Constructors

*/

// Default constructor
public Ingredient() {
this.name = "";

this.amount = 0.0;

this.unit="";

this.calories = 0.0;

/] Parameterized constructor

public Ingredient(String name, double amount, String unit, double calories) {
this.name = name;
this.amount = amount;
this.unit = unit;

this.calories = calories;

/*

Accessors and Mutators

*/

public String getName() {

return name;

public void setName(String name) {

this.name = name;

public double getAmount() {

return amount;

public void setAmount(double amount) {

this.amount = amount;

public String getUnit() {

return unit;

public void setUnit(String unit) {

this.unit = unit;

public double getCalories() {

return calories;

public void setCalories(double calories) {

this.calories = calories;

/*

Methods

*/

/**
* Prints the formatted ingredient details.
* This method replaces the previously unimplemented
* method that caused a runtime exception.
*/
public void printIngredient() {
System.out.println("- " + amount + " " + unit + " of " + name

+" (" + calories + " calories)");

/%
* Click nbfs://nbhost/SystemFileSystem/Templates/Licenses/license-default.txt to change this license
* Click nbfs://nbhost/SystemFileSystem/Templates/Classes/Class.java to edit this template
*/

package com.mycompany.steppingstone5_recipetest;

import java.util. ArrayList;

import java.util.Scanner;

/**

*

* @author Darren J. Oates
*/

public class SteppingStone6 RecipeBox {

/*

Instance Variables

*/

private ArrayList<SteppingStone5 Recipe> listOfRecipes;

/*

Constructors

*/

// Default constructor
public SteppingStone6 RecipeBox() {

this.listOfRecipes = new ArrayList<>();

/I Constructor with parameters
public SteppingStone6 RecipeBox(ArrayList<SteppingStone5 Recipe> listOfRecipes) {
this.listOfRecipes = listOfRecipes;

/*

Accessors and Mutators

*/

public ArrayList<SteppingStone5 Recipe> getListOfRecipes() {

return listOfRecipes;

public void setListOfRecipes(ArrayList<SteppingStone5 Recipe> listOfRecipes) {
this.listOfRecipes = listOfRecipes;

/*

Custom Methods

*/

[k
* Prints the names of all recipes in the recipe box.
*/
public void printAllRecipeNames() {
System.out.println("\nRecipe List:");
for (SteppingStone5 Recipe recipe : listOfRecipes) {

System.out.println("- " + recipe.getRecipeName());

ks

* Prints all details for a recipe that matches the given name.

*

* (@param recipeName name of the recipe to display
*/
public void printAllRecipeDetails(String recipeName) {

boolean found = false;

for (SteppingStone5_ Recipe recipe : listOfRecipes) {
if (recipe.getRecipeName().equalsignoreCase(recipeName)) {
recipe.printRecipe();

found = true;

if (!found) {

System.out.println("Recipe not found.");

/**

* Creates a new recipe using user input and
* adds it to the recipe box.
*/
public void addNewRecipe() {
SteppingStone5 Recipe newRecipe = new SteppingStone5 Recipe();
newRecipe.createNewRecipe();

listOfRecipes.add(newRecipe);

/*

Main Method (Driver)

*/

public static void main(String[] args) {
Scanner scnr = new Scanner(System.in);

SteppingStone6 RecipeBox recipeBox = new SteppingStone6 RecipeBox();

String choice;

do {
System.out.println("\nRecipe Manager Menu");
System.out.println("1. Add new recipe");
System.out.println("2. View all recipe names");
System.out.println("3. View recipe details");
System.out.println("4. Exit");

System.out.print("Choose an option: ");

choice = scnr.nextLine();

switch (choice) {

case "1" -> recipeBox.addNewRecipe();

case "2" -> recipeBox.printAllRecipeNames();

case "3" -> {

System.out.print("Enter recipe name: ");

String name = scnr.nextLine();

recipeBox.printAllRecipeDetails(name);

case "4" -> System.out.println("Exiting Recipe Manager.");

default -> System.out.println("Invalid selection.");

+ while (!choice.equals("4"));

